Increasing solar energy capture and conversion efficiency

Richard Sayre, Los Alamos National Laboratory
Transgenic algal strains with higher chlorophyll a/b ratios have smaller antennae sizes.

Chl-protein complexes from algae with different antennae sizes:

- **Large (WT)**: CC-424 (WT)
- **Small**: cbs-3 (Chl b-less)
- **Intermediate**: CR-118, CR-133 (Chl b-deficient)

Raw Chl fluorescence is greater in strains containing more Chl b.

Antennae Size

<table>
<thead>
<tr>
<th>Chl a/b</th>
<th>Large (WT)</th>
<th>Small</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>CC-424 (WT)</td>
<td>cbs-3 (Chl b-less)</td>
<td>CR-118, CR-133 (Chl b-deficient)</td>
</tr>
</tbody>
</table>

Chl a/b = 2.2

No Chl b

Chl a/b = 4.9

CPI*

CPII

LOW HIGH

No Chl b

Chl a/b = 2.2

Chl a/b = 4.9
LHCII distribution is more disperse in transgenics having intermediate antennae sizes.

High resolution hyperspectral imaging and SANS of LHC, PSII and membrane distribution.
Transgenics with intermediate antennae sizes have the highest (2.5 X WT) photosynthetic rates at saturating light.

Similar results were obtained when photosynthesis is expressed on a cell number rather than chlorophyll basis.

Perrine et al., (2012) Algal Research “online”
Thank you

LANL
Sangeeta Negi

DDPSC
Zoe Perrine

Howard Berg
Anil Kumar
(not pictured)

Sandia National Lab
Jerilyn Timlin

Oak Ridge National Lab
Volker Urban
Hugh O’Neill
Brad O’Dell

Aaron Collins