Hydrophilic Bacteriochlorins for Biohybrid Light-Harvesting Architectures

Scientific Achievement
New synthetic pigments have been created that enable aqueous-based construction of light-harvesting architectures.

Significance and Impact
The ability to readily construct biohybrid systems (peptides + absorbers) facilitates capture of the near-infrared solar light.

Research Details
—We previously created a family of lipophilic (i.e., greasy) bioconjugatable bacteriochlorins. The bacteriochlorins were attached to bio-inspired peptides from native photosynthetic systems. The bacteriochlorin-peptide conjugates self-assemble to give dyads. Limited solubility was adverse to handling, purification, and stability.
—Here, a new design affords bacteriochlorins that are hydrophilic (i.e., partially water soluble) and can be tethered to the desired peptides. Such conjugates assemble as expected. Studies are underway concerning light-harvesting oligomer formation.

Spectral features: The bacteriochlorin above has $\lambda_{\text{abs}} \sim 750 \text{ nm}$, $\lambda_{\text{em}} \sim 755 \text{ nm}$, and $\Phi_t = 0.095$ (DMF) or 0.023 in water. New designs are underway to achieved increased aqueous solubility.

K. R. Reddy, J Jiang and J. S. Lindsey, studies in progress.

Work was performed at North Carolina State University.